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Abstract. We introduce a general formalism to obtain localized quantum wavepackets as
dynamically controlled systems, in the framework of Nelson stochastic quantization. We show
that in general the control is linear, and it amounts to introducing additional time-dependent
terms in the potential. In this way one can construct for general systems either coherent packets
following classical motion with constant dispersion, or coherent packets following classical
motion whose time-dependent dispersion remains bounded for all times. We show that in the
operatorial language our scheme amounts to introducing a suitable generalization to arbitrary
potentials of the displacement and scaling operators that generate the coherent and squeezed
states of the harmonic oscillator.

1. Introduction

The present work addresses the problem of developing a comprehensive theoretical approach
to quantum control in the framework of Nelson stochastic quantization, which is currently
recognized as an independent and self-consistent formulation of nonrelativistic quantum
mechanics in the language of stochastic processes [1–3].

The experimental goal of quantum control is to use radiation to drive matter to a desired
target or outcome [4], and several theoretical schemes modelling controlled wavepacket
dynamics have been suggested. The unifying theme in all of the current theoretical and
experimental schemes is the optimal use of the coherence of laser light to manipulate the
quantum mechanical phase relationship among the eigenstates of matter.

From this point of view, the coherent and squeezed states of the harmonic oscillator can
be considered as special but paradigmatic examples of controlled wavepacket dynamics [5].
Progress in the femtosecond pulse technology now allows for the realization of quantum
control in the laboratory; for example, frequency-chirped femtosecond laser pulses have
been synthesized to control the evolution of vibrational wavepackets of the iodine molecule
[6].

The potential interest of Nelson stochastic mechanics for the theory of controlled
wavepacket dynamics then stems from the fact that the original Nelson quantization scheme,
which contained somead hocassumptions [1], has been later recognized to be a particular
instance of classical stochastic control theory. Namely, it has been proven [3] that quantum
dynamics can be derived via a stochastic variational principle, by suitably extremizing the
classical action along diffusive trajectories replacing the classical deterministic ones. The
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stochastic variational scheme has since been extended and exploited in a number of different
contexts [7–9].

For our purposes, what is appealing in the stochastic quantization scheme is the
possibility that it offers the possibility to obtain both new results and new insights into
old problems, by looking at quantum coherence in terms of general properties of classical
diffusion processes.

In particular, variational minimization of the stochastic osmotic uncertainty functional
yields the complete structure of the quantum states of minimum uncertainty, i.e. the
harmonic-oscillator coherent and squeezed states [10]. The same structure had been derived
earlier [11] by simply saturating the osmotic uncertainty inequality [12].

In the present paper we address, in the stochastic quantization approach, the problem
of constructing a general framework for controlled wavepacket dynamics, paying special
attention to the construction of coherent and squeezed states for general non-harmonic
potentials.

To that end, we introduce the conditions of classical motion for the wavepacket centre
and the conditions of constant or bounded time-varying dispersion as constraints for the
stochastic dynamics in an assigned, generic configurational external potentialV (x). We
then show that such constraints select a class of Nelson diffusions with classical current
velocity and wave-like propagating osmotic velocity [13, 14].

To each Nelson diffusion belonging to such class, there is associated a quantum state
that is a solution of the Schrödinger equation in a time-dependent potentialV̄ (x, t) having a
simple relation with the original systemV (x). In particular, if we ask for a purely coherent
wavepacket solution, i.e. one whose centre〈x̂〉 follows exactly the classical motionxcl(t)
in V (x) with constant dispersion1x̂, then the potential̄V (x, t) is completely determined
by the functional form ofV (x) and by the knowledge ofxcl(t).

Clearly, such ‘controlling’ potentialV̄ (x, t) may be, in principle, experimentally
fashioned in the laboratory, once a solvable classical potentialV (x) is assigned.

Connection with the standard operatorial language is then provided by showing that this
new class of controlled coherent states is generated by letting the standard unitary Glauber
displacement operator act on any stationary state (for instance the ground state) associated
to V (x).

We then extend our scheme to construct coherent wavepackets with bounded time-
varying dispersion1x̂. By resorting to the stochastic framework we are able to determine
the new controlling potential̃V (x, t) (that in general does not coincide with the controlling
potential V̄ (x, t) obtained in the case of constant spreading) connected to the classical
potentialV (x), and to derive the evolution equation for1x̂, which turns out to be the
classical envelope equation, well known in the theory of charged-particle beam dynamics.

Knowledge of the solution1xcl(t) of the classical envelope equation and of the classical
trajectoryxcl(t) associated to the potentialV (x), determines unambiguously the form of the
controlling potentialṼ (x, t).

A suitable unitary operator acting on any stationary state (for instance the ground state)
associated toV (x) is then introduced in the coordinate representation in order to construct
these controlled states in the standard operatorial language: they are displacement-operator
generalized coherent states with time-dependent dispersion.

In fact, this unitary operator acts as the product of two distinct mappings on the
ground state of the given potentialV (x): the ordinary Glauber displacement operator and
a dynamical scaling operator, namely a dynamical squeeze operator. Squeezing is then
naturally embedded in this scheme, and the evolution equation for1x̂ also yields the
dynamical equation controlling the time-evolution of squeezing.
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Overall, the above construction provides a natural way to introduce a class of physical
coherent and squeezed states associated to general non-harmonic potentials, in the sense
of controlled wavepacket dynamics, by imposing suitable requirements on the physical
properties of the desired solutions. In this way we provide a specific physical solution to
the problem, posed by Schrödinger over 70 years ago, on how to generalize the notion of
coherent state beyond harmonic systems.

This paper is organized as follows. In section 2 we give a brief review of the basic
ingredients of Nelson stochastic quantization that will be needed in the following sections.
In section 3 we describe the structure of the harmonic-oscillator coherent and squeezed
states in the stochastic picture. In section 4 we show how to construct general controlled
coherent states in the stochastic framework by imposing the constraints of classical motion
for the wavepacket centre and of constant wavepacket dispersion, and we derive the explicit
expression for the controlling potential̄V (x, t). In section 5 we extend the discussion
imposing the constraints of classical motion and of bounded time-varying dispersion and
we derive the explicit expression for the displacement and squeeze operators associated to
the controlled coherent states with bounded time-varying dispersion. In section 6 we draw
our conclusions.

2. Stochastic mechanics

We shall quickly review the basic ingredients of the stochastic formulation of quantum
mechanics that will be needed in the following.

This quantization procedure rests on two basic prescriptions; the first one, kinematical,
promotes the configuration of a classical system to a conservative diffusion process with
diffusion coefficient equal to ¯h/2m.

If we denote byq(t) the configurational variable for a point particle with massm, this
prescription reads

dq(t) = v(+)(q(t), t)dt +
√
h̄

2m
dw(t) dt > 0. (1)

In the above stochastic differential equationv(+) is a (forward) drift field that is determined
by assigning the dynamics, andw is the standard Wiener process.

An intuitive manner to look at equation (1) is to consider it as the appropriate quantum
form of the classical kinematical prescription: the Wiener process models the quantum
fluctuations that are superimposed on the classical deterministic dynamics.

If we consider the stochastic backward increment of the process dq(t) = q(t)−q(t−dt),
under very general mathematical conditions the diffusionq(t) admits the backward
representation

dq(t) = v(−)(q(t), t)dt +
√
h̄

2m
dw∗(t) dt > 0 (2)

wherew∗ is a time-reversed Wiener process. The probability densityρ(x, t) of the process,
defined on the pointsx of the configuration space, is induced by the conditioned expectations
on the increments of the process with respect to the Wiener measure. The backward and
forward drifts can then be expressed as stochastic fields on the configuration space through
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the conditioned expectations

v(+)(x, t) ≡ lim
1t→0+

〈
q(t +1t)− q(t)

1t

∣∣∣∣q(t) = x〉
v(−)(x, t) ≡ lim

1t→0+

〈
q(t)− q(t −1t)

1t

∣∣∣∣q(t) = x〉 . (3)

They represent respectively the mean forward (backward) velocity fields.
In the hydrodynamic picture of the process, the drifts are replaced by the osmotic

velocity u(x, t),

u(x, t) ≡ v(+)(x, t)− v(−)(x, t)
2

= h̄

2m
∇[ln ρ(x, t)] (4)

and by the current velocityv(x, t),

v(x, t) ≡ v(+)(x, t)+ v(−)(x, t)
2

. (5)

Finally, the Fokker–Planck equation for the probability densityρ(x, t) takes the form
of the continuity equation

∂tρ(x, t) = −∇[ρ(x, t)v(x, t)]. (6)

The process is completely determined by the the couple(v(x, t), u(x, t)) or, equivalently,
by the couple(v(x, t), ρ(x, t)).

The dynamical prescription is introduced by defining the mean regularized classical
actionA. In the hydrodynamic Eulerian picture it is a functional of the couple(ρ, v):

A[ρ, v] =
∫ tb

ta

[m
2
(v2(x, t)− u2(x, t))− V (x, t)

]
ρ(x, t)d3x dt (7)

whereV (x, t) denotes the (possibly time-dependent) configurational external potential.
The equations of motion are then obtained by extremizingA against smooth variations

δρ, δv vanishing at the boundaries of integration, with the continuity equation taken as a
constraint.

After standard calculations one obtains the ‘quantum Newton law’

∂tv(x, t)+ (v(x, t) · ∇)v(x, t)− h̄2

4m2
∇
(∇2
√
ρ(x, t)√
ρ(x, t)

)
= −∇V (x, t) (8)

with the current velocity fixed to be a gradient field at all pointsx whereρ(x, t) > 0:

v(x, t) = ∇S(x, t)
m

(9)

whereS(x, t) is a scalar field.
Defining the wavefunction9(x, t) associated to a generic single-particle quantum state

in the hydrodynamic form

9(x, t) =
√
ρ(x, t)exp

[
i

h̄
S(x, t)

]
(10)

it immediately follows that the Schrödinger equation with potentialV (x, t) for the complex
wavefunction9(x, t) is equivalent to the quantum Newton law together with the continuity
equation, i.e. to two real nonlinearly coupled equations for the probability densityρ(x, t)
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and for the phaseS(x, t) (or, alternatively, for the osmotic and current velocitiesu(x, t)
andv(x, t)).

Then, to each quantum state there corresponds in stochastic mechanics a diffusion
processq(t) with

ρ(x, t) = |9(x, t)|2 (11)

and

v(x, t) = − ih̄

2m
∇
[

ln
9(x, t)

9∗(x, t)

]
. (12)

The space integral of equation (8) yields the Hamilton–Jacobi–Madelung equation. It
is useful for what follows to write this equation in the form

∂tS(x, t)+ m
2
v2(x, t)− m

2
u2(x, t)− h̄

2
∇u(x, t) = −V (x, t). (13)

The correspondence between expectations and correlations defined in the stochastic and
in the canonic pictures are

〈x̂〉 = E(q(t)) 〈p̂〉 = mE(v(x, t))
1x̂ = 1q (1p̂)2 = m2[(1u)2+ (1v)2].

(14)

In the above relationŝx and p̂ are the position and momentum operators in the
Schr̈odinger picture,〈·〉 are the expectations of the operators in the given state9, E(·)
is the expectation of the stochastic variables in the Nelson state{ρ, v} corresponding to the
state9, and1(·) are the root mean square deviations.

In the theory of diffusion processes, the functional(1q)2(1u)2 is known as the osmotic
uncertainty product; it shares the remarkable property that it is always greater than or equal
to the square of the diffusion coefficient. The following chain inequality then immediately
follows:

(1x̂)2(1p̂)2 > m2(1q)2(1u)2 > h̄2

4
. (15)

The osmotic uncertainty relation and its equivalence with the momentum–position
uncertainty were proven in [12].

3. Coherent and squeezed states of the harmonic oscillator

Saturation of the osmotic uncertainty relation (15) yields the Glauber coherent states in the
stochastic picture [11]: they are Nelson diffusions of minimum osmotic uncertainty, with
constant dispersion1q. They are characterized by a deterministic classical current velocity:

v(x, t) = 〈v(x, t)〉 = vcl(t) ≡ ẋcl(t) (16)

and by an osmotic velocity linear in the process:

u(x, t) = − h̄

2m1q
ξ. (17)

In equation (16) and from now on we denote the stochastic expectationsE(·) with the
same symbol〈·〉 used for quantum expectations (wherever no confusion arises). We have
also introduced the adimensional variable

ξ = x − xcl(t)
1q

(18)
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obtained by first shifting the coordinatex by the classical trajectoryxcl(t) = 〈q(t)〉,
and then by scaling it through the wavepacket dispersion1q. In fact, the adimensional
configurational variableξ will play a fundamental role in all of the following.

The probability densityρ(x, t) associated to the state (16), (17) is readily obtained
by comparing the expression foru(x, t) given in (17) and the relation (4) linking the
probability density with the osmotic velocity. The phaseS(x, t) is obtained by comparing
the expression forv(x, t) given in (16) and the relation (9) connecting the current velocity
with the phase. In this way one reconstructs completely the wavefunction9(x, t). The
potentialV (x, t), with classical trajectoriesxcl(t), that solves Schrödinger equation for the
state (16), (17) is finally identified by replacing the expressions forS(x, t), v(x, t), and
u(x, t) in the Hamilton–Jacobi–Madelung equation (13). This is a typical inverse-problems
strategy: given a certain state with some desired features, in this case that of being of
minimum osmotic uncertainty with constant dispersion, one looks for the potential that
solves the Schrödinger equation and allows for such a state.

We notice that the states of minimum osmotic uncertainty with constant1q have a purely
classical current velocity, so that1v = 0. Therefore the minimum osmotic uncertainty is
exactly equivalent to the minimum Heisenberg uncertainty. Then, following the procedure
outlined above, it is straightforward to recover the complete structure of the Heisenberg
minimum uncertainty states, which are the Schrödinger–Glauber coherent states of the
harmonic oscillator. We have:

ρ(x, t) = 1√
2π(1q)2

exp

[
− (x − xcl(t))

2

2(1q)2

]
S(x, t) = mvcl(t)x − m

2
vcl(t)xcl(t)− 1

2
h̄ωt

9(x, t) = 1[
2π(1q)2

] 1
4

exp

{
− (x − xcl(t))

2

4(1q)2
+ i

h̄

[
mvcl(t)

(
x − xcl(t)

2

)
− h̄

2
ωt

]}

V (x) = m

2
ω2x2 ω2 = h̄2

4m2(1q)4
.

(19)

For those readers unfamiliar with the stochastic picture, we recall that in expressions (19)
xcl(t) = 〈x̂〉 andmvcl(t) = 〈p̂〉.

If we now impose saturation of the osmotic uncertainty, but allow for a time-dependent
dispersion1q, we obtain the harmonic-oscillator squeezed states. They are Nelson
diffusions with time-varying1q, with osmotic velocityu(x, t) still of the form (17), and
with current velocity allowing for a term dependent on the time-evolution of the dispersion
[11]:

v(x, t) = vcl(t)+ ξ d

dt
1q. (20)

The last term in equation (20) is responsible for the quantum anticommutator term
appearing in the phase of the squeezed wavepackets, which are quantum states of minimum
Schr̈odinger uncertainty. This can be easily seen as follows. Define the centred position
operatorx̂c = x̂−〈x̂〉, the centred momentum operatorp̂c = p̂−〈p̂〉, and the centred Nelson
processqc(t) = q(t) − 〈q(t)〉. All these quantities have zero expectation value. Next,
consider the quantityq2

c (t); obviously, 〈q2
c (t)〉 = (1q)2. By straightforward calculation

one gets

d

dt
〈q2
c (t)〉 =

d

dt
(1q)2 = 2[〈q(t)v(x, t)〉 − 〈q(t)〉〈v(x, t)〉] = 〈{x̂c, p̂c}〉

m
(21)
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where{, } denotes the quantum anticommutator, which expresses, when taken betweenx̂c
and p̂c, the quantum position–momentum correlation. In turn, the latter is the Schrödinger
part of the uncertainty, and for the squeezed states it is directly connected with the current
uncertainty product in the Nelson stochastic picture. In fact, from equation (20) it is
straightforward to see that

(1v)2 = 2

(
d

dt
1q

)2

. (22)

The classical evolution equation for the dispersion1q can be easily obtained by inserting
the expressions (17) and (20) for the stochastic hydrodynamic velocities into the quantum
Newton law (8) and the Hamilton–Jacobi–Madelung equation (13); after straightforward
manipulations, we obtain

d21q

dt2
+mω21q = h̄2

4m2(1q)3
(23)

which is the classical equation for the beam envelope, well known from the theory of
classical optics and of particle accelerator dynamics.

The expressions (19) for the Gaussian probability density and for the harmonic oscillator
potential remain unaltered in the case of minimum uncertainty states with time-dependent
dispersion. However, from equations (20) and (21) it follows that the phase of the
wavefunction picks up an extra term proportional to the quantum anticommutator:

9(x, t) = 1

[2π(1q)2]
1
4

exp

{
− (x − xcl(t))

2

4(1q)2

+i

[
m

h̄
vcl(t)x +m

( 〈q(t)v(x, t)〉 − xcl(t)vcl(t)
2h̄

)[
x − xcl(t)
1q

]2

− m
2h̄
vcl(t)xcl(t)− 1

2
ωt

]}
. (24)

The above stochastic picture for the harmonic-oscillator coherent and squeezed states
can be entirely derived in a stochastic variational approach by extremizing the osmotic
uncertainty product against smooth variations of the densityρ(x, t) and of the current
velocity v(x, t) [10]. The possibility of extending such variational approach to study
local minimum uncertainty behaviours in non-harmonic systems is a current subject of
investigation [10].

This concludes our discussion of the coherent and squeezed states of the harmonic
oscillator in the framework of stochastic mechanics. We next move to study the problem
of how to generalize the concept of coherent and squeezed states to non-harmonic systems,
from the same perspective of controlled wavepacket dynamics that we have adopted in
this section, with the emphasis focused on the determination of the potential that solves
Schr̈odinger dynamics once a certain state with some desired features has been selected.

4. Controlled coherent quantum wavepackets: constant dispersion

A well known property of the coherent states (16), (17) and of the squeezed states (17)–(20),
is that they follow the classical motion in the coherent Glauber sense:

d

dt
(m〈v(x, t)〉) = −∇V (x, t)|x=〈q(t)〉. (25)



4124 S De Martino et al

Again, from a dynamical point of view a coherent state is a wavepacket whose
centre follows classical motion not only in the mean, but even along the mean (classical)
trajectories, and whose dispersion is either constant, or controlled in its time-evolution
(squeezing).

In quantum mechanics the dynamics of mean values obeys the Ehrenfest theorem: as a
consequence, the coherent evolution (25) is satisfied exactly if

〈∇V (x, t)〉 = ∇V (x, t)|x=〈q〉. (26)

In the case of quadratic potentials the above constraint is automatically satisfied for
any quantum state. For other generic potentialsV (x, t), equation (26) in general cannot be
satisfied. Our strategy is now to search, in the framework of Nelson stochastic mechanics,
for states obeying the coherence constraints of classical motion (25), (26) with constant
dispersion1q.

To this end, we first observe that equation (21) can be recast in the form

1q
d1q

dt
= 〈qc(t) · v(x, t)〉 (27)

where the dot denotes the scalar product between the centred processqc(t) and the current
velocity v(x, t).

Therefore, in stochastic mechanics, we have that a necessary and sufficient condition
for a constant dispersion1q is that the expectation value of the scalar product between the
centred configurational process and the current velocity vanishes. We see immediately that
a sufficient condition for this to happen is that the current velocity be purely classical, that
is, v(x, t) = vcl(t). Other possible choices of current velocities orthogonal to the centred
Nelson process could in principle be considered, and they might lead to the definition of new
classes of states in quantum mechanics. For the moment, we concentrate on the simplest
choice of a classical current velocity.

In stochastic mechanics, due to the existence of the continuity equation, a particular
choice of the current velocity selects an entire class of osmotic velocities, and thus of
quantum states. In particular, the choicev = vcl(t) that guarantees a constant dispersion,
does not restrict the osmotic velocity to be of the minimum uncertainty form (17). Rather,
upon insertion ofvcl(t) in the continuity equation, one can show that the latter is satisfied
by any osmotic velocity (probability density) of the following wave-like propagation form
[13]:

u(x, t) = h̄

2m1q
G(ξ) (28)

whereG(ξ) can be any arbitrary adimensional function of the adimensional shifted and
scaled configurational coordinateξ , provided it yields a normalizable probability density
ρ(ξ). Keeping in mind relation (4) connecting the density to the osmotic velocity, and
recalling that a probability density (being non-negative) can be expressed as the exponential
of a real function, we have the general form

ρ(ξ) = N
(1q)d

exp [2R(ξ)]. (29)

In the above,N is a positive, adimensional normalization constant, andd denotes the
spatial dimension of the system under consideration. As∇x = ∇ξ /1q, it follows that the
adimensional normalizable functionR(ξ) is related toG(ξ) by G(ξ) = 2∇ξR(ξ).

The associated wavefunction is thus of the coherent-state form

9c(x, t) = N 1/2

(1q)d/2
exp

[
R(ξ)+ i

(
m

h̄
vcl(t) · x + S0(t)

h̄

)]
(30)
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where we recall thatmvcl(t) = 〈p̂〉 andS0(t) is an arbitrary time-dependent constant. What
are the properties of this class of states selected by the pairs(v, u) of the form (16)–(28)?
By construction, they are nonstationary states of constant dispersion. Of course, in general
they are not Heisenberg minimum uncertainty states; the latter are recovered only with the
choice of the linear formG(ξ) = −ξ .

However, it is easily verified that they share with the harmonic-oscillator minimum
uncertainty states the remarkable property that they obey the constraint (25) for classical
motion except, at most, a constant. To see this in the simplest and most explicit way, let
us suppose thatvcl(t) is chosen such that its integralsxcl(t) are the classical trajectories
of a generic one-dimensional configurational potentialV (x). What follows can then be
generalized with minor technical complications to higher spatial dimensions.

Suppose then that we are given the stationary states of the quantum mechanical problem
associated toV (x). For instance, we consider the ground state90(x, t). By a simple scaling
argument, it can be cast in the general form

90(x, t) = N
1/2
0√
1q0

exp

[
F

(
x

1q0

)
+ i

h̄
E0t

]
(31)

whereN0 is the adimensional normalization constant,1q0 the ground-state dispersion,E0

the ground-state energy, andF a given adimensional function.
Comparing expressions (30) and (31) we see that the coherent wavefunction9c(x, t)

is obtained from the ground-state wavefunction90(x, t) first by identifying the arbitrary
function R with F , and then by applying to90 the following unitary Glauber-like
displacement operator [14]:

D̂[xcl(t), vcl(t)] = exp

[
i

h̄
(S0(t)− E0t)

]
exp

(
i

h̄
mvcl(t)x̂

)
exp

(
− i

h̄
xcl(t)p̂

)
. (32)

This operator, when applied to any wavefunction9(x, t) displaces its space argument
x into x − xcl(t) and introduces in the phase the coherent termmvcl(t)x + S0(t)− E0t .

We now see that the wavepacket (30) is really a coherent state in the sense that the
associated probability density has the same functional form of the ground-state density, so
that it shares the same statistics; in particular, the two normalization constants coincide and
the constant spreading1q is just the constant ground-state dispersion1q0. Furthermore, the
uncertainty product remains constant too and equal to the ground-state uncertainty product,
just like the standard harmonic-oscillator coherent states do; in fact the latter are just a
particular case of the present construction. Last but not least, the wavepacket centre
follows the classical motionxcl(t) in the given configurational potentialV (x) according
to the Glauber law (25).

The price to be paid for this construction is that these states do not satisfy the time-
dependent Schrödinger equation in the originally assigned potentialV (x), unless of course
the latter is chosen to be a polynomial of degree not greater than two.

However, the controlled states9c(x, t) of the coherent form (30) are still solutions of
the time-dependent Schrödinger equation in a modified potentialV̄ (x, t) which has a very
remarkable relation to the original potentialV (x). Namely, taking the wave-like density
ρ(ξ), equation (29), and the coherent phaseSc(x, t) = mvcl(t)x + S0(t) associated to the
state (30), and inserting them in the Hamilton–Jacobi–Madelung equation (13) one finds
that 9c(x, t) is a solution of the time-dependent Schrödinger equation in the following
time-dependent potential:

V̄ (x, t) = V [x − xcl(t)] +mẍcl(t)x. (33)
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The above expression gives the generic form of a controlling potential that allows for
the desired wavepacket solution with coherent and localized dynamics in some previously
assigned configurational potentialV (x).

Formally, the controlling potential̄V (x, t) is obtained from the original external potential
V (x) shifting its argument by the classical trajectories associated toV (x) itself, and then
by adding a correcting term linear inx, which is multiplied by the inertia associated to the
force field−∇xV (x). The time dependence of the controlling potential is thus parametric
via the solutions of the classical equations of motion in the external fieldV (x).

The question naturally arises about the physical interpretation of this scheme of quantum
control. In particular, one may ask what is the meaning of the correcting time-dependent
linear term and more generally whether a controlling potential of the form (33) might be
realizable in the laboratory.

In principle, the potential (33) is a well-defined object, and its practical realization
heavily depends on the actual choice of the original potentialV (x): one should then take
up a careful case-by-case analysis. However, we can make some general comments on the
structure ofV̄ (x, t) for arbitraryV (x).

We observe that the linear correcting term, superimposed on the original potential, has
the simple interpretation of an electric field with amplitude varying in time according to
the classical force law inV (x). The problem is then what actual time dependences can be
experimentally realized. As for the shift in the argument ofV (x), it is in principle feasible,
provided again that the assigned time dependence of the coefficients multiplying powers
of x can be actually fashioned by some waveform generating set-up; yet, we observe that
there might be many situations where the shift could be considered a small perturbation,
allowing for Taylor expansion ofV or other approximate treatements, for instance in the
case of a dynamics taking place in spatial and/or time regions wherexcl(t) is a slowly
varying quantity.

In conclusion, the states that we have constructed in the stochastic framework are
controlled wavepackets with optimized quasi-classical behaviour, which generalize the
concept of the harmonic-oscillator coherent states in a precise physical sense. They follow
a classical motion with constant dispersion in a given configurational potentialV (x) and
can be obtained via a unitary transformation of a generic energy eigenstate ofV (x). The
programming potential̄V (x, t) which must be introduced for the desired states to satisfy
quantum dynamics has a simple and intriguing structure, strongly related to the original
potential V (x). In particular, its form allows in principle for approximate treatements
according to what degree of localization and coherence one desires to accomplish for a
generic non-harmonic quantum system.

5. Controlled coherent quantum wavepackets: time-dependent dispersion

We now proceed to consider the case of time-dependent dispersion, that is we consider the
more general form of equation (20) for the current velocity of minimum uncertainty, and
we again follow the strategy adopted in the previous section for the case of the classical
current velocity with constant dispersion.

We expect that the controlled coherent states that we will select by taking the choice
(20) for the current velocity should be states following two coupled dynamical equations,
equation (25), for the wavepacket center, and an evolution equation for the dispersion1q,
analogous of the envelope equation (23) derived in the harmonic case.

We proceed as follows. We first set the notation by relabelling the dispersion as a
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function of time. We put

σ(t)
.= 1q.

Next, inserting equation (20) into the continuity equation (6) we are left with

∂tρ(x, t) = v(ξ, t)∇ξ ρ(x, t)− σ̇ (t)
σ (t)

(34)

whose general solution is only a function ofξ , as can be immediately seen, e.g. by moving
into Fourier space. Again, one has selected a class of probability densities of the form (29)
as well as a class of osmotic velocities of the wave propagating form (28).

Inserting now the current velocity (20) in the equation of motion (8), by equation (28)
we obtain

−mξσ̇ (t)+ m
2
∇xu2(ξ)+ h̄

2
∇2
xu(ξ) = ∇xV (x, t)− 〈∇xV (x, t)〉 (35)

where we exploited the Ehrenfest theoremv̇cl(t) = −〈∇xV (x, t)〉/m.
Letting x = 〈q(t)〉 = xcl(t) (i.e. ξ = 0), we are left with

∇xV (x, t)|x=xcl − 〈∇xV (x, t)〉 =
m

2
∇xu2(ξ)|ξ=0+ h̄

2
∇2
xu(ξ)|ξ=0. (36)

It is straightforward to show that this relation also holds in the case of constant dispersion
v(x, t) = vcl(t). The right-hand side is obviously either constant or zero except for singular
potentials: in these casesu(ξ) diverges inξ = 0. However, the scheme can also be
implemented for singular potentials by takingξ = xcl(t) rather thanx = xcl(t). Explicit
examples and applications to both singular and non-singular potentials will be discussed in
detail elsewhere.

Given the state (20)–(28) we now want to write explicitly the associated phaseS(x, t)

and the evolution equation for the dispersionσ(t). This is achieved by exploiting the
Hamilton–Jacobi–Madelung equation (9): recalling thatv(x, t) is the gradient field of
S(x, t), equation (20) implies

S(x, t) = mvcl(t)x + m[x − xcl(t)]2

2σ(t)
σ̇ (t)+ S0(t). (37)

Inserting equations (37), (20), and (28) into equation (13), and taking its expectation,
we obtain:
m

2
σ(t)σ̈ (t)+ m

2

[
〈v(ξ, t)〉2− m

2
〈u2(ξ)〉

]
= −〈V (x, t)〉 + xcl(t)〈∇xV (x, t)〉 − Ṡ0(t).

We can eliminate in the above expression the time-derivative of the classical action and
obtain, after trivial manipulations, an evolution equation forσ(t):

σ̈ (t)− 〈u(ξ)
2〉

σ(t)
= −〈ξ∇xV (x, t)〉

m
. (38)

By equation (28) foru(ξ) it is immediately seen that

〈u(ξ)2〉 = h̄2K2

4m2σ 2(t)
(39)

whereK2 = ∫∞
−∞G

2(ξ)ρ(ξ) dξ ; equation (38) is then the desired equation for the time-
evolution of the dispersion, generalizing the classical envelope equation (23). Moreover, it
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is coupled, through the gradient of the potentialV (x, t), with the equation of motion (25)
for the wavepacket centre〈q(t)〉 = xcl(t).

The general form of the wavefunction for this class of states is readily obtained by
putting together equation (29) forρ(ξ) and equation (37) forS(x, t):

9s(x, t) = N 1/2

[σ(t)]d/2
exp

[
R(ξ)+ i

h̄

(
mvcl(t)x + m[x − xcl(t)]2

2σ(t)
σ̇ (t)+ S0(t)

)]
. (40)

We can rewrite this expression in more standard quantum mechanical terms by recalling
equation (21), so that

9s(x, t) = N 1/2

[σ(t)]d/2
exp

[
R(ξ)+ i

h̄

(
〈p̂〉x + 〈{q̂c, p̂c}〉

(2σ(t))2
(x − 〈q̂〉)2+ S0(t)

)]
. (41)

The above wavefunctions9s(x, t) are realizations of nonstationary states with classical
motion and controlled time-dependent spreading. They generalize the harmonic-oscillator
squeezed states (24) in the same sense as the states (30)9c(x, t) generalize the harmonic-
oscillator coherent states (19).

We shall now move to the study of the controlling potential that needs to be introduced
for the controlled squeezed states9s(x, t) to satisfy the Schr̈odinger equation. But first we
wish to complete the analogy with the controlled coherent states introduced in the previous
section. Namely, we will show that the states (40) can be obtained introducing a proper
scaling ‘squeeze’ operator.

We proceed as follows. We first recall that the harmonic-oscillator squeezed states are
generated by the successive application of a scaling squeeze operator and of a Glauber
displacement operator to the harmonic-oscillator ground state. We then define the following
dynamical scaling operator̂S[σ(t)]:

Ŝ[σ(t)] = exp

[
i

(
f (t)

h̄
{q̂, p̂}

)]
exp

[
i

(
g(t)

(σ0)2
q̂2

)]
exp

[
f (t)g(t)

2h̄(σ0)2
[{q̂, p̂}, q̂2]

]
(42)

whereσ0 denotes the (time-independent) dispersion associated to the ground state90(x, t) of
a certain assigned configurational potentialV (x). Given theσ(t) solution of equation (38),
the two functionsf (t) andg(t) read

f (t) = −1

2
ln

(
σ(t)

σ0

)
g(t) = m

h̄
[1− 2f (t)]−1 d

dt
ln σ(t). (43)

We see from these relations that the functionf (t) plays the role of a dynamical squeezing
parameter. We now let̂S[σ(t)] act on the ground-state wavefunction90(x, t), cast in
the form (31), associated to a given configurational potentialV (x). We thus define the
dynamically scaled wavefunction:

9sc(x, t) = Ŝ[σ(t)] ·90(x, t). (44)

By straightforward algebra,{q̂, p̂} = ih̄(1+ 2x d/dx) and [{q̂, p̂}, q̂2] = −4ih̄q̂2, and
one obtains

9sc(x, t) = exp

[
f (t)

(
1+ 2x

d

dx

)]
· χ(x, t) (45)

whereχ(x, t) is given by

χ(x, t) = exp

[
i
g(t)

(σ0)2
(1− 2f (t))x2

]
90(x, t). (46)
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We now exploit the extension to the real axis of the following relation, holding for any
analytic functionW(z), which was introduced in [20] for the study ofq-oscillators coherent
states:

Qx d/dx [W(x)] = W(Qx) (47)

with Q a real c-number andW analytic on the real axis. LettingQ = exp[2f (t)] and
W = χ one is finally left with

9sc(x, t) = exp

[
f (t)+ i

g(t)

(σ0)2
(1− 2f (t))e4f (t)x2

]
90(e

2f (t)x, t). (48)

We then obtain the state9s(x, t), equation (40), by applyingD̂[xcl(t), vcl(t)],
equation (30), to9sc(x, t):

9s(x, t) = D̂[xcl(t), vcl(t)](Ŝ[σ(t)] ·90(x, t)) = D̂[xcl(t), vcl(t)] ·9sc(x, t). (49)

By recalling equations (43) it is then straightforward to show that9s(x, t), equation (49),
coincides with the wavefunction (40). We have thus proved that the controlled squeezed
states (40), (41) can also be introduced by a suitable modification of the displacement-
operator approach to the harmonic-oscillator coherent and squeezed states.

The states9s(x, t) do not satisfy the Schrödinger equation in the assigned potential
V (x), although their wavepacket centre does follow the classical motion in the force field
generated byV (x).

The situation is completely analogous to that described in the previous section. However,
now, due to the presence of a time-varying dispersion, the controlling potential does not
coincide with the expression (33). We thus label itṼ (x, t) to distinguish it fromV̄ (x, t)
introduced in the previous section. After solving the Hamilton–Jacobi–Madelung equation,
the new controlling potential reads

Ṽ (x, t) = V [x − xcl(t)] +m
(
ẍcl(t)− σ̈ (t)

σ (t)
xcl(t)

)
x + mσ̈(t)

2σ(t)
x2. (50)

We see that, compared to the controlled coherent case, a controlled squeezed state
must be associated to a programming potential with an extra correcting quadratic term;
furthermore, the time-dependent coefficients of the correcting terms acquire a more
complicated structure as they now depend not only on the classical trajectoriesxcl(t) but
also on the solutionsσ(t) of the generalized classical envelope equation (38).

The physical interpretation of the quadratic correcting term can be given simply in
terms of a diamagnetic interaction superimposed by the controller in the laboratory to the
previously existing external interactionV (x). About the experimental feasibility of such a
controlling set-up we can repeat in principle what we have observed in the previous section
for the linear controlling potential. We will further comment on both the linear and the
quadratic controlling potentials in our conclusions.

6. Conclusions and outlook

At this point let us summarize our results.
Working in the framework of Nelson stochastic quantization, we have introduced a class

of controlled coherent states (constant dispersion) and a class of controlled squeezed states
(bounded time-evolution of the dispersion).
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The wavepacket centres follow a classical evolution in a generic preassigned time-
independent external potentialV , while the states obey Schrödinger dynamics in a time-
dependent potential that has a simple relation toV . For constant dispersion such a time-
dependent potential (which we have named a controlling or programming potential) presents
a linear correcting term to the original time-independent potential, see equation (33). For
the bounded time-dependent dispersion, the controlling potential presents a linear plus a
quadratic correcting term, see equation (50).

For the controlled squeezed states, the evolution equation controlling the spreading of
the wavepacket is the classical envelope equation of classical optics, and it is naturally
coupled with the classical evolution equation for the wavepacket centre. The solutions
of the two classical equations enter as (time-dependent) parameters in the programming
potentials.

We have also shown that the controlled states can be obtained through a particular
extension of the displacement-operator coherent and squeezed states of the harmonic
oscillator by defining a suitable dynamical scaling (squeeze) operator.

The consequent dilatations or contractions of the wavepacket width are then shown to
be controlled by a single adimensional squeezing parameterf (t).

A comment is due at this point. It is well known that generalized coherent states
can be obtained extending the three different existing approaches to the definition of the
harmonic-oscillator coherent states: they are, respectively, the minimum-uncertainty, the
annihilation-operator, and the displacement-operator method.

The states obtained by extension of these three methods are in general different [15].
The displacement-operator coherent states are those preserving most of the properties

of the harmonic-oscillator coherent states: they are still overcomplete and still enjoy a
resolution of unity. Moreover, we have shown in the present paper that by a proper choice
of the Glauber parameterα entering the Glauber displacement operator, they follow a
classical motion without dispersion.

As to squeezed states, an extension of the minimum-uncertainty and annihilation-
operator methods to arbitrary nonlinear systems was carried out by Nieto and collaborators
[16]. They also introduced an extension of the minimum-uncertainty method to obtain
generalized coherent states [17].

However, an extension of the displacement-operator method to obtain generalized
squeezed states runs into difficulties [18] and is still missing, although some progress in that
direction has recently been made by Nieto and Truax for systems allowing for Holstein–
Primakoff or Bogoliubov transformations [19].

Here we have introduced a possible extension of the displacement-operator method by
constructing squeezed states via a structure of controlling potentials. In this sense, we
have given a particular answer to the problem posed by Schrödinger exactly 70 years ago,
of whether it is possible to construct coherent-states solutions for general non-quadratic
potentials. We showed that it is possible, at the price of modifying the original potential
in a very definite way: through the external action of a correcting interaction, the original
system can follow exactly and indefinitely a coherent (or a squeezed) dynamics.

In this paper we outlined the general features of the method: elsewhere [21] we will
present the construction of coherent and squeezed states in the sense of Schrödinger for a
wide sample of potentials of physical and conceptual interest.

It might be worth noting that we have chosen for simplicity the ground state to
generate controlled coherent and squeezed states by the action of operators (32) and (42);
it is, however, immediately seen that their application on any stationary state yields again
controlled coherent and squeezed states of the form (30) and (40).
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We remark that equation (39) represents the ‘stochastic squeezing’ condition satisfied
by our states. Namely, it expresses the complementary time dependence of the spreading
σ(t) and of the osmotic velocity uncertainty1u.

It is easily seen that in the canonic picture equations (14), (20), and (39) imply
1q̂21p̂2 = K2+ L2(t), with L(t) = m1q̂ d(1q̂)/dt .

The reciprocal variation in time of1q̂ and1p̂ is then ruled by1q̂ itself, determined
as the solution of equation (22) with the initial condition1q̂0. In this way squeezing is
introduced as a self-consistent prescription on the dynamical evolution of the wavepacket
spreading.

In conclusion, our scheme of coherent and squeezed states via programming potentials
provides an instance of the so-called theory of quantum control (or ‘controlled quantum
mechanics’), in the sense that, given a desired quantum solution (e.g. a squeezed state), one
can provide a theoretical framework to describe what dynamical system (potential) must be
introduced to produce such a state.

This theoretical model is deeply rooted in the ideas and techniques of the theory of
stochastic optimal control: a probabilistic approach to the description and the construction
of quasi-deterministic structures, as generalized coherent and squeezed states, must
involve an optimization procedure (minimization of the noise) and an external dynamical
monitoring (programming potentials) of the non-deterministic system under study (holding
the wavepacket localized along the classical trajectory).

We are currently studying the possibility of applying our scheme to two very real
and important problems in the field of quantum control: Rydberg wavepackets [22, 5]
and molecular pseudo-Gaussian states [6]. In both instances, the experimental situation
consists of a laboratory-fashioned interaction (femtosecond laser pulses) superimposed on
existing natural interactions (the atomic and molecular potentials) which gives rise to an
approximately coherent and localized dynamics of the wavepackets.

Our scheme of quantum control seems potentially capable of suggesting from a general
theoretical framework the optimal interactions that should be fashioned to obtain the best
control on the dynamics (the highest degree of coherence and localization). Namely, it would
be interesting to verify the actual experimental feasibility of the programming potentials
(33)–(50) and of the associated controlled coherent and squeezed states for some specific
physical systems such as the ones mentioned above. We will report elsewhere [23] about
the work currently in progress on these subjects.
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